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ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) constitute a generic and expressive frame-
work for multiagent planning under uncertainty. However,
planning optimally is difficult because solutions map local
observation histories to actions, and the number of such his-
tories grows exponentially in the planning horizon. In this
work, we identify a criterion that allows for lossless cluster-
ing of observation histories: i.e., we prove that when two
histories satisfy the criterion, they have the same optimal
value and thus can be treated as one. We show how this
result can be exploited in optimal policy search and demon-
strate empirically that it can provide a speed-up of multiple
orders of magnitude, allowing the optimal solution of sig-
nificantly larger problems. We also perform an empirical
analysis of the generality of our clustering method, which
suggests that it may also be useful in other (approximate)
Dec-POMDP solution methods.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Planning under uncertainty, cooperative multiagent systems,
decentralized POMDPs

1. INTRODUCTION
A fundamental question in artificial intelligence is how

an agent should decide which action to take in a specific
situation. When uncertainty is involved, this question is
particularly challenging. In the last two decades, many re-
searchers have turned to decision-theoretic models for an
answer. In particular, the Markov decision process (MDP)
has become a popular model for single-agent planning un-
der action uncertainty, i.e., when the agent’s actions have
stochastic effects. When uncertainty regarding the system
state is also present, partially observable MDPs (POMDPs)
can be used.
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In the multiagent case, planning under action and state
uncertainty can be formalized as a decentralized POMDP
(Dec-POMDP) [4], which models the interaction of coop-
erative agents. In this model, each agent receives only its
own noisy observation, which provides limited information
about the state. In this setting POMDP theory does not
apply as agents cannot compute the belief state. Moreover,
in addition to reasoning about the state, each agent must
reason about the the actions of other agents, which are in
turn dependent on their observations.

This paper considers the optimal solution of finite-horizon
Dec-POMDPs [10, 17, 3, 12, 5]. Such a solution, or joint
policy, specifies what action to take for each agent and each
possible observation history. Since the number of such joint
policies is exponential in the number of histories, finding op-
timal solutions is intractable for all but the smallest prob-
lems [4]. To overcome this problem, previous research has in-
vestigated lossy compression of the space of histories [8] and
observations [6], and lossless policy space compression [5].

In this paper, we reduce the computational costs of solving
Dec-POMDPs by clustering histories, an idea first consid-
ered by Emery-Montemerlo et al. [8], who cluster histories
in Bayesian games (BGs) that model individual stages of
the Dec-POMDP. However, their approach uses an ad-hoc
heuristic to determine which histories to cluster and conse-
quently finds only approximate solutions. By contrast, we
identify a criterion that guarantees that two individual his-
tories have the same optimal value, allowing lossless cluster-
ing and therefore faster optimal solutions of Dec-POMDPs.
Comparing to policy space compression [5], clustering his-
tories has potentially more impact, as the policy space is
exponentially larger than the history space.

In particular, we cluster histories within the MAA∗ algo-
rithm [17] applied to BGs, as described in [12]. We demon-
strate that in several well-known test problems, our pro-
posed method allows for the optimal solution of significantly
longer horizons. For instance, we solve the well-known bench-
mark decentralized tiger (Dec-Tiger) problem [11] for hori-
zon h = 5 (in which case there are 3.82e29 joint policies).
To the best of our knowledge, such results were not obtain-
able previously. Subsequently we analyze the generality of
the proposed clustering. Results suggest that our clustering
approach may have a significant impact on other (approxi-
mate) algorithms as well.

2. THE DEC-POMDP MODEL
In this section we formally introduce the Dec-POMDP

model and describe the planning problem. A decentralized

Cite as: Lossless Clustering of Histories in Decentralized POMDPs, 
Frans A. Oliehoek, Shimon Whiteson, Matthijs T.J. Spaan, Proc. of  
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 
2009, Budapest, Hungary, pp. 577–584
Copyright © 2009, International Foundation for Autonomous Agents 
and Multiagent Systems (www.ifaamas.org), All rights reserved.



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

578

partially observable Markov decision process (Dec-POMDP)
with n agents is defined as a tuple 〈S,A,T,R,O,O〉 where:

• S is a finite set of states.

• The set A = ×iAi is the set of joint actions, where Ai

is the set of actions available to agent i. Every time
step one joint action a = 〈a1,...,an〉 is taken.1

• T is the transition function, a mapping from states
and joint actions to probability distributions over next
states: T : S ×A → P(S).

• R is the reward function, a mapping from states and
joint actions to real numbers: R : S ×A → R.

• O = ×iOi is the set of joint observations. Every time
step one joint observation o = 〈o1,...,on〉 is received.

• O is the observation function, a mapping from joint ac-
tions and successor states to probability distributions
over joint observations: O : A× S → P(O).

In a Dec-POMDP, an agent i knows only its own individ-
ual actions ai and observations oi. The planning problem
involves finding the best policy for each agent, where a pol-
icy is a mapping from the individual histories an agent can
observe to its actions. We assume a finite planning horizon
of h time steps, and an initial belief b0 ∈ P(S); this is the
initial state distribution at time t = 0.2

The action-observation history (AOH) for agent i, �θ t
i , is

the sequence of actions taken and observations received by

agent i until time step t: �θ t
i =

`
a0

i ,o
1
i ,a

1
i ,...,a

t−1
i ,ot

i

´
. The

joint action-observation history is a tuple with the action-

observation history for all agents �θt = 〈�θ t
1 ,...,�θ t

n〉. The ob-
servation history (OH) for agent i is the sequence of obser-
vations an agent has received: �o t

i =
`
o1

i ,...,o
t
i

´
. Similar to

action-observation histories, �o t denotes a joint observation
history. In a similar fashion �a t

i and �a t denote (joint) action
histories.

A pure or deterministic policy, πi, for agent i in a Dec-
POMDP is a mapping from observation histories to actions,
πi : �Oi → Ai. A pure joint policy π is a tuple containing
a pure policy for each agent. We also consider policies that
are partially specified w.r.t. time. We can write a policy for
agent i as πi = (δ0

i , . . . ,δh−1
i ), where δt

i is a decision rule for
stage t: a mapping from length-t observation histories to ac-
tions δt

i : �Ot
i → Ai. Now a partial policy ϕt

i = (δ0
i , . . . ,δt−1

i )
only specifies actions for the first t stages. A partial joint
policy ϕt = 〈ϕt

1, . . . ,ϕ
t
n〉 specifies a partial policy for all

agents.

3. DEC-POMDPS VIA BAYESIAN GAMES
A Bayesian game (BG) [13] is an extension of a normal

form game in which the agents can hold some private infor-
mation which is expressed by their type. Emery-Montemerlo
et al. [7] proposed to use BGs to approximate Dec-POMDPs.
In their method, agents construct and solve a BG for each
stage of the process in an on-line fashion. Such modeling
is exact when using an optimal payoff function for the BGs
[12].

The crucial difficulty in making a decision at some stage t
in a Dec-POMDP is that the agents lack a common signal
on which to condition their actions and must rely instead on

1Unless stated otherwise, subscripts denote agent indices.
2Unless stated otherwise, superscripts denote time indices.

Algorithm 1 GMAA∗

1: v�←−∞
2: P←{ϕ0 = ()}
3: repeat

4: ϕt← SelectHighestRankedPartialJPol(P)
5: Φnew←ConstructAndSolveBG(ϕt,b0)
6: if Φnew contains full policies Πnew ⊆ Φnew then

7: π′← arg maxπ∈Πnew
V (π)

8: if V (π′) > v� then

9: v�←V (π′) {found new lower bound}
10: π�←π′

11: P←{ϕ ∈ P | bV (ϕ) > v�}{prune P}
12: Φnew←Φnew \ Πnew {remove full policies}

13: P←(P \ ϕt) ∪ {ϕ ∈ Φnew | bV (ϕ) > v�}
14: until P is empty

their individual (action-)observation histories. Given b0 and
ϕt, the joint policy followed for stages 0 . . . t − 1, this situa-
tion can be modeled as a BG with identical payoffs. Such a
game BG(b0,ϕt) consists of the set of agents {1 . . . n}, their
joint actions A, the set of their joint types Θ, a probability
distribution over these joint types P (·) and a payoff func-
tion u that maps a joint type and action to a real number
u(θ,a). A joint type θ ∈ Θ specifies a type for each agent θ =
〈θ1, . . . ,θn〉. Since the type of an agent represents the pri-

vate information it holds, types are AOHs θi ≡ �θ t
i and joint

types correspond to joint AOHs θ ≡ �θt. Given ϕt and b0,
the probability distribution over joint AOHs is well-defined

and the payoff function is given by u(θ,a) ≡ Q∗(�θt,a), the
optimal Q-value function of the Dec-POMDP. Although Q∗

is intractable to compute, heuristic Q-value functions bQ can
be computed, for instance by using the underlying MDP’s
value function.

We can solve such a BG by computing the expected heuris-

tic value bV for all joint BG-policies βt = 〈β1, . . . ,βn〉, where
an individual BG-policy maps types (i.e., AOH histories) to

actions βi(�θ
t
i ) = at

i. This valuation is given bybV (βt) =
X
�θt

P (�θt|ϕt
,b

0) bQ(�θt
,β

t(�θt)), (1)

where βt(�θt) = 〈βi(�θ
t
i )〉i=1...n denotes the joint action that

results from application of the individual BG-policies to the

individual AOH �θ t
i specified by �θt. The solution βt,∗ is

the joint BG-policy with the highest expected value. Note
that if ϕt is deterministic, the probability of a joint AOH
�θt = 〈�a t,�o t〉 is non-zero for only one �a t per �o t. I.e., �a t

can be reconstructed from �o t,ϕt. Therefore, in effect the
BG-policies reduce to decision rules: mappings from OH
histories to actions βi(�o

t
i ) = at

i.
The modeling of a stage of a Dec-POMDP as a BG as

outlined above, can be applied in a heuristic policy search
scheme called Generalized MAA∗ (GMAA∗), which gen-
eralizes MAA∗ [17] and the method proposed by Emery-
Montemerlo et al. [7]. Algorithm 1 shows GMAA∗, which
maintains an open list P of partial joint policies ϕt and their

heuristic values bV (ϕt). Every iteration the highest ranked ϕt

is selected and expanded, i.e., the Bayesian game BG(ϕt,b0)
is constructed and all joint BG-policies βt are evaluated.
Consequently these joint BG-policies are used to construct
a new set of partial policies

Φnew := {ϕt+1 = (ϕt
,β

t)}

and their heuristic values. When the heuristic values are an
upper bound to the true values, any lower bounds v� (i.e.,
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full joint policies) that are found can be used to prune P.
When P becomes empty, the optimal policy has been found.

GMAA∗ as outlined here is MAA∗ reformulated to work
on BGs. The approach of Emery-Montemerlo et al. [7] is
similar, but does not backtrack. I.e., rather than construct-
ing all new partial policies ∀βt ϕt+1 = (ϕt,βt) only the best-
ranked partial policy (ϕt,βt,∗) is constructed and the open
list P will never contain more than 1 partial policy.

4. LOSSLESS CLUSTERING
GMAA∗ can find the optimal solution for Dec-POMDPs

by repeatedly solving BGs for different stages. However, the
cost of solving these BGs grows doubly-exponentially with
the horizon. In a BG for the last stage, the number of joint
policies, and thus the cost of optimally solving it, is

O
“
|A∗|

n(|O∗|
h−1)

”
, (2)

where A∗ and O∗ denote the largest individual action and
observation sets. To counter the exponential growth of the
BGs, Emery-Montemerlo et al. [7] proposed to prune AOHs
with low probabilities. In subsequent work [8], they replaced
this pruning by clustering histories, based on the profiles
of the payoff functions of the BGs, thereby increasing the
quality of the found policies.

Here, we also consider clustering of AOHs. In contrast,
however, we do not consider a lossy clustering scheme based

on the heuristic payoff function bQ of the BGs. Rather, we
introduce a criterion for clustering AOHs based on the be-
lief they induce over histories of the other agents and over
states. Subsequently we show that clustering histories that
satisfy this criterion is lossless: the solution for the clustered
BG can be used to construct the solution for the original BG
and the values of the two BGs are identical. Thus, the cri-
terion allows for clustering of AOHs in BGs that represent
Dec-POMDPs without compromising solution quality, i.e.,
optimality is preserved.

4.1 Probabilistic Equivalence Criterion
A particular stage t of a Dec-POMDP can be represented

as a BG. For such a BG we can cluster two individual his-
tories �θi,a,�θi,b when they satisfy the probabilistic equivalence
criterion as we define here.

Criterion 1 (Probabilistic Equivalence). Two

AOHs �θi,a,�θi,b for agent i are probabilistically equivalent (PE)
when the following holds:

∀�θ �=i
∀s P (s,�θ�=i|�θi,a) = P (s,�θ�=i|�θi,b). (3)

Remark 1. Alternatively, the criterion can be rewritten to
the following two:

∀�θ �=i
P (�θ�=i|�θi,a) = P (�θ�=i|�θi,b), (4)

∀�θ �=i
∀s P (s|�θ�=i,�θi,a) = P (s|�θ�=i,�θi,b). (5)

These equations give a natural interpretation: the first says
that the probability distribution over the other agents’ AOHs

must be identical for both �θi,a,�θi,b. The second demands
that the resulting joint beliefs are identical.

Remark 2. The above probabilities are not well defined
without the initial state distribution b0 and past joint pol-
icy ϕt. However, since we consider clustering of histories

within a particular BG (for some stage t) and because this
BG is constructed for a particular b0,ϕt, they are implicitly
specified. Therefore we drop these arguments, clarifying the
notation.

Remark 3. Probabilities as defined in (3) appear similar
to beliefs in POMDPs, but are substantially different be-
cause they are not sufficient statistics. In fact, only a ”multi-
agent belief” specified over states and future policies of other
agents has been shown to be a sufficient statistic in Dec-
POMDPs [10]. Our notion of PE is specified over states
and AOHs given only a past joint policy. Thus establishing
conditions for equivalence in Dec-POMDPs is a non-trivial
extension over the POMDP case.

Probabilistic equivalence has a convenient property: if it
holds for a particular pair of histories, then it will also hold
for all identical extensions of those histories, i.e., the prop-
erty propagates forwards regardless of the policies the other
agents use.

Definition 1. Given two AOHs �θ t
i,a,�θ t

i,b, their respective

extensions �θ t+1
i,a = (�θ t

i,a,ai,oi) and �θ t+1
i,b = (�θ t

i,b,a
′
i,o

′
i) are

called identical extensions if and only if ai = a′
i and oi = o′i.

Lemma 1 (Propagation of PE). Given �θ t
i,a,�θ t

i,b that

are PE, regardless of the policy the other agents use βt
�=i,

identical extensions are also PE:

∀at
i
∀

o
t+1
i

∀βt
�=i
∀st+1∀�θ

t+1
�=i

P (st+1
,�θ

t+1
�=i |�θ t

i,a,a
t
i,o

t+1
i ,β

t
�=i) =

P (st+1
,�θ

t+1
�=i |�θ t

i,b,a
t
i,o

t+1
i ,β

t
�=i) (6)

Proof. See appendix.

4.2 Proof of Lossless Clustering
Here we prove that if the identified PE criterion holds for

two AOHs in a BG, we can cluster them together without
loss in value for any agent. Theorem 2 shows that cluster-
ing can be performed when an agent commits to taking the
same action for two histories. Since a rational agent will
commit if two histories are best-response equivalent (BRE),
Lemma 3 identifies two conditions for BRE. Both of these
conditions follow from the PE criterion: the first by defi-
inition and the second by Lemma 4. Theorem 5 combines
these pieces to show that lossless clustering is possible when
the PE criterion holds.

Theorem 2 (Reduction through commitment).
Given that in a Bayesian game B agent i is committed to
select a policy that assigns the same action for two of its
types θa

i ,θb
i , i.e., to select a policy βi such that

βi(θ
a
i ) = βi(θ

b
i ), (7)

then the BG can be reduced to a smaller one without loss
in value for any of the agents. I.e., the two types can be
substituted by a new type θc

i such that

∀θ �=i
P (θc

i ,θ �=i) = P (θa
i ,θ �=i) + P (θb

i ,θ �=i) (8)

∀j∀a u(〈θc
i ,θ �=i〉 ,a) =

P (θa
i ,θ �=i)u(〈θa

i ,θ �=i〉 ,a) + P (θb
i ,θ �=i)u(

˙
θb

i ,θ �=i

¸
,a)

P (θa
i ,θ �=i) + P (θb

i ,θ �=i)
. (9)

The result is a new BG B′ in which the expected value is the

same as in the original BG: V B′

= V B.
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Proof. See appendix.

This theorem tells us that given that agent i is committed
to taking the same action for its types θa

i ,θb
i , we can reduce

the Bayesian game B to a smaller one B′ and translate the
joint BG-policy β′ found for B′ back to a joint BG-policy β
in B. This does not necessarily mean that β = (βi,β �=i) is
also a solution (Bayesian Nash-equilibrium) for B, because
the best-response of agent i against β �=i may not select the
same action for θa

i ,θb
i . Rather βi is the best-response against

β �=i given that the same action needs to be taken for θa
i ,θb

i .
For instance, when θa

i ,θb
i are BRE as we detail below.

We now consider a BG for a stage of a Dec-POMDP and
demonstrate when the best-response for two histories is the
same. In a general BG, a best-response β∗

i for agent i’s type
θi against some fixed policy profile β �=i is given by

β
∗
i (θi) = arg max

ai

X
θ �=i

P (θ�=i|θi)ui(〈θi,θ �=i〉 ,〈ai,β �=i(θ�=i)〉).

Lemma 3 (Best-response equivalence). When for
two types θi,a,θi,b it holds that

∀θ �=i
P (θ�=i|θi,a) = P (θ�=i|θi,b) (10)

and

∀a∀θ �=i
u(θi,a,θ �=i,a) = u(θi,b,θ �=i,a), (11)

then the best-response policy for agent i will always select
the same action for θi,a,θi,b.

Proof. We can simply derive

β
∗
i (θi,a) = arg max

ai

X
θ �=i

P (θ�=i|θi,a)u(θi,a,θ �=i,ai,a �=i)

= arg max
ai

X
θ �=i

P (θ�=i|θi,b)u(θi,b,θ �=i,ai,a �=i)

which is equal to β∗
i (θi,b).

Since we want to show that two PE histories can be clus-
tered under the optimal policy, we need to show (11) holds
and thus that their optimal Q-values are the same.

Lemma 4 (Q∗ equivalence). When two histories in a

BG for a Dec-POMDP �θi,a, �θi,b satisfy Criterion 1, then
they have equal Q-values according to the optimal finite-
horizon Q-value function

∀�θt
�=i
∀a Q

∗(�θ t
i,a,�θ

t
�=i,a) = Q

∗(�θ t
i,b,�θ

t
�=i,a). (12)

Proof. The proof is by induction backwards in time (i.e.,
from the last time step t = h−1 to the first t = 0). However,
to prove the induction step we employ Lemma 1, which en-
sures propagation forward through time of the PE criterion
on identical extensions. See appendix for details.

Theorem 5 (Lossless clustering). When two histo-

ries �θi,a,�θi,b are PE, then they are best-response equivalent
and can be clustered as one history without loss in value.

Proof. Given that PE implies BRE, we can apply The-

orem 2 to prove that �θi,a,�θi,b can be clustered without loss
in value. Proof that PE in fact does imply BRE is as fol-
lows. The criterion itself entails (10). (11) for the BG con-
structed using the optimal Q-value function follows from
Lemma 4.

Algorithm 2 Φnew = ConstructAndSolveBG-Cluster(ϕt,b0)

1: BGt←ConstructBG(ϕt,b0)
2: BGt←ClusterBG(BGt)
3: for all joint BG-policies βt do

4: ϕt+1←(ϕt,βt)

5: bV (ϕt+1)←V 0...t−1(ϕt) + bV (βt)

6: Φnew←Φnew ∪ ϕt+1

Algorithm 3 BG = ClusterBG(BG)

1: for each agent i do

2: for each individual type θi ∈ BG.Θi do

3: for each individual type θ′
i ∈ BG.Θi do

4: if P (θ′
i) = 0 then

5: BG.Θi←BG.Θi\θ
′
i {Remove θ′

i from BG:}
6: continue with next θ′

i ∈ BG.Θi

7: isEquivalent← true
8: for all 〈s,θ �=i〉 do

9: if P (s,θ �=i|θi) 	= P (s,θ �=i|θ
′
i) then

10: isEquivalent← false
11: break
12: if isEquivalent then

13: BG.Θi←BG.Θi\θ
′
i {Remove θ′

i from BG:}
14: for each a ∈ A do

15: for all θ �=i do

16: { take the lowest upper bound }
u(θi,θ �=i,a)←min(u(θi,θ �=i,a),u(θ′

i,θ �=i,a))
17: P (θi,θ �=i)←P (θi,θ �=i) + P (θ′

i,θ �=i)
18: P (θ′

i,θ �=i)← 0

5. GMAA*-CLUSTER
Knowledge of which individual histories can be clustered

together without loss of value may potentially be employed
by many algorithms. In this paper, we focus on its applica-
tion within the GMAA∗ framework.

Emery-Montemerlo et al. [8] showed how clustering can
be incorporated at every stage in their algorithm: when the
BG for a stage t is constructed, first a clustering of the indi-
vidual histories (types) is performed and only afterward the
(reduced) BG is solved. The same thing can be done within
GMAA∗, leading to an algorithm we dub GMAA∗-Cluster.
GMAA∗-Cluster replaces the function ConstructAndSolveBG
from Algorithm 1 with Algorithm 2. The actual clustering is
performed by Algorithm 3, which performs a pairwise com-
parison of all types of each agent to see if they satisfy the
criterion and eliminates individual types with zero probabil-
ity. If there is a large number of states, some efficiency may
be gained by first checking (4) and then checking (5), rather
than looping over all 〈s,θ �=i〉 as is done in line 8. Also note
that the algorithm shown assumes that the heuristic used as
the payoff function u is admissible (i.e., is an upper bound
to the optimal value). Therefore, rather then using (9), we
can take the lowest upper bound in line 16. In general this
might increase the tightness of the heuristic, which can have
a great effect on the performance [12].

Because PE of AOHs propagates forwards (i.e., identical
extensions of PE histories are also PE), we do not have to
construct all |Oi|

t possible AOHs at every stage t (given
the past policy ϕt

i of agent i). Instead of clustering this
exponentially growing set of types, we can simply extend
the already clustered types of the previous stage’s BG, as
shown in Algorithm 4. This way, we bootstrap the clustering
at each stage and spend significantly less time clustering. If
the typeset Θ′

i at the previous stage t− 1 was much smaller
than the set of all histories |Θ′

i| 	 |Oi|
t−1, then the new

typeset Θi is also much smaller: |Θi| 	 |Oi|
t.

The above is possible only because we perform an exact,
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Algorithm 4 BGt = ConstructExtendedBG(BGt−1,βt−1)

1: t←BGt−1.t + 1
2: pBG←BGt−1

3: pPol←βt−1

4: for each agent i do

5: BGt.Θi = ConstructExtendedTypeSet(i)

6: for each joint type θ = (θt−1,at−1,ot) ∈ BGt.Θ do

7: for each state st ∈ S do

8: Compute P (st|θ)

9: P (θ)←P (ot|θt−1,at−1)P (θt−1)
10: for each a ∈ A do

11: q←∞

12: for each history �θt represented by θ do

13: q←min(q, bQ(�θt,a)) { if Q∗ ≤ bQ we can take the lowest
upper bound }

14: u(θ,a)← q

value preserving, clustering for which Lemma 1 tells us that
identical extensions will also be clustered without loss in
value. When performing the same procedure in a lossy clus-
tering scheme (e.g., as in [8]) errors might accumulate and
thus it might be better to re-cluster from scratch at every
stage. Since lossy clustering is beyond the scope of this pa-
per, we only consider bootstrapped clustering.

Optimally solving a BG takes exponential time w.r.t. the

number of types, as there are O(|A∗|
n|Θ∗|) joint BG-policies.

Clustering involves a pairwise comparison of all types of
each agent and each of these comparisons needs to check
O(|Θ∗|

n−1 |S|) numbers for equality to verify (3). The total
cost of clustering can therefore be written as

O(n |Θ∗|
2 |Θ∗|

n−1 |S|),

which is only polynomial in the number of types, and the
number of types itself can be much less than the number of
histories when using bootstrapped clustering. When clus-
tering decreases the number of types |Θ∗|, it can therefore
significantly reduce the overall time needed. However, when
no clustering is possible, we will incur some overhead.

From an implementation perspective, it is important to
avoid reconstructing flat Dec-POMDP policies, as they can
cause an exponential blow-up in space requirements. In-
stead, we maintain a pointer to the previous joint policy
ϕt = (ϕt−1,βt−1). The current implementation keeps all
constructed ϕt−1 in memory, but reference counting can be
used discard all ϕt−1 which are no longer being pointed to
by any ϕtin the policy pool.

6. EXPERIMENTS
In our experiments, we first compare optimal solving of

several problems with and without clustering, followed by
an analysis of the generality of lossless clustering, including
for larger horizons for which optimal solutions are infeasible
to compute.

We evaluated on a range of standard benchmarks prob-
lems. The most well-known are the Dec-Tiger [11] and
BroadcastChannel [10] problem. Dec-Tiger considers two
agents that have to coordinate to open the door to the trea-
sure, rather than to the tiger. At the start of the problem,
the tiger is behind the left or right door with 50% probabil-
ity. Agents can either open either door or listen. Every stage
each agent noisily hears the tiger behind the left or right
door, but the observation conveys information only when
both agents selected ‘listen’ in the previous stage. Opening
the door resets the problem, but the agents do not observe

this. In BroadcastChannel two agents have to transmit mes-
sages over a communication channel, but when both agents
transmit at the same time a collision occurs which is noisily
observed by the agents. Other problems we used are GridS-
mall with two observations [1]; Cooperative Box Pushing
[15], a larger two-robot benchmark; Recycling Robots [2];
FireFighting [12], and Hotel 1 [16].

All timing results mentioned in this paper are CPU times
with a resolution of 0.01s. The timings exclude time needed
to parse the problem and compute the heuristic (which can
be amortized).

6.1 Optimal solutions using clustering
For all problems we compared GMAA∗ against GMAA∗-

Cluster using the QBG or QMDP heuristic [12], depending on
problem size and planning horizon. Regardless of the partic-
ular heuristic, both methods compute an optimal policy, but
we expect GMAA∗-Cluster to be more efficient when lossless
clustering is possible in the domain. The obtained results
are shown in Table 1, which details the optimal value V ∗

and the running times TGMAA∗ for GMAA∗ and Tcluster for
GMAA∗-Cluster. Entries marked ‘−’ indicate that no so-
lution was found within 8 hours. Furthermore, the table
lists the number of joint types in the BGs constructed for
the last stage without clustering, |BGt|, and with, |cBGt|.
The former is constant while the latter is an average, as the
algorithm can form BGs for different past policies, leading
to clusterings of different sizes. For the Dec-Tiger problem,
the solution time needed by GMAA∗-Cluster is more than
3 orders of magnitude less for horizon h = 4. For h = 5 this
test problem has 3.82e29 joint policies. To our knowledge,
no other method has been able to optimally solve h = 5 Dec-
Tiger. GMAA∗-Cluster, however, is able to solve Dec-Tiger
for h = 5 in reasonable time.

For the FireFighting problem, no lossless clustering is pos-
sible at any stage, and as such, we incur some overhead for
the clustering. This is clearly shown for h = 4. For hori-
zon 3, GMAA∗-Cluster is actually a bit faster. Analysis re-
vealed that for this horizon the cost of attempting to cluster
is negligible. GMAA∗-Cluster is faster because constructing
the BGs using bootstrapping from the previous BG takes
less time than constructing a BG from scratch.

For GridSmall, Cooperative Box Pushing, and Hotel 1 we
see results comparable to those for Dec-Tiger: substantial
clustering is possible, resulting in significant speedups. Be-
cause the solution of BGs takes time exponential in their
size, even small reductions in size yield a big increase in
efficiency. Therefore, the substantial amounts of clustering
found in these problems, allow optimal solutions for longer
horizons than have have been presented before.

For BroadcastChannel, GMAA∗-Cluster achieves an even
more dramatic increase in performance, allowing the solving
of up to horizon h = 25. Analysis reveals that the BGs con-
structed for all stages are fully clustered: they contain only
one type for each agent. Consequently, the time needed to
solve each BG does not grow with the horizon. Total time,
however, still increases super-linearly due to more backtrack-
ing. The Recycling Robots problem can also be clustered to
a relatively constant number of approximately 9 joint types
per stage, allowing for optimal solving to high horizons.
Both the BroadcastChannel and Recycling Robots problem
run out of (2GB of) memory for higher horizons.

Note that the results reported here are a vast improvement
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Dec-Tiger (QBG)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 −4.0000 ≤ 0.01 ≤ 0.01 4 4.00
3 5.1908 0.02 ≤ 0.01 16 9.00
4 4.8028 3,069.4 1.50 64 23.14
5 7.0265 − 130.82 256 40.43

BroadcastChannel (QMDP)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 2.0000 ≤ 0.01 ≤ 0.01 4 1.00
3 2.9900 ≤ 0.01 ≤ 0.01 16 1.00
4 3.8900 3.22 ≤ 0.01 64 1.00
5 4.7900 − ≤ 0.01 256 1.00
6 5.6900 − ≤ 0.01 1024 1.00
7 6.5900 − ≤ 0.01 4096 1.00
8 7.4900 − ≤ 0.01 16384 1.00
9 8.3900 − ≤ 0.01 65536 1.00
10 9.2900 − ≤ 0.01 2.62e5 1.00
15 13.7900 − ≤ 0.01 2.68e8 1.00
20 18.3132 − 0.08 2.75e11 1.00
25 22.8815 − 1.67 2.81e14 1.00

GridSmall (QBG)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 0.9100 ≤ 0.01 ≤ 0.01 4 4.00
3 1.5504 4.21 0.71 16 12.00
4 2.2416 − 30.17 64 25.00

Cooperative Box Pushing (QMDP)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 17.6000 0.05 ≤ 0.01 25 4.00
3 66.0810 − 4.55 625 25.00

Recycling Robots (QMDP)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 6.8000 ≤ 0.01 ≤ 0.01 4 4.00
3 9.7647 0.02 ≤ 0.01 16 9.00
4 11.7264 23052.5 0.02 64 8.67
5 13.7643 − 0.10 256 9.00
6 15.5760 − 0.19 1024 9.00
7 17.2126 − 0.67 4096 9.00
8 18.6839 − 1.28 16384 9.00
9 20.0085 − 2.72 65536 9.00
10 21.2006 − 4.92 2.62e5 9.00
11 22.2734 − 9.83 1.05e6 9.00
12 23.2390 − 17.11 4.19e6 9.00
13 24.1080 − 30.61 1.68e7 9.00
14 24.8901 − 50.12 6.71e7 9.00
15 25.5940 − 81.46 2.68e8 9.00

Hotel 1 (QBG)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 9.5000 ≤ 0.01 0.02 16 4.00
3 15.7047 − 0.07 256 16.00
4 20.1125 − 1.37 4096 32.00

FireFighting 〈nh = 3,nf = 3〉 (QBG)

h V ∗ TGMAA∗ (s) Tcluster(s) |BGt| |cBGt|

2 −4.3825 0.03 0.03 4 4.00
3 −5.7370 0.91 0.70 16 16.00
4 −6.5789 5605.3 5823.5 64 64.00

Table 1: Results of GMAA∗ on several problems.
Listed are the run times of regular GMAA∗ and
GMAA∗-Cluster, and the size of the BGs solved at
each time step, with and without clustering.

over the current state-of-the-art methods for optimally solv-
ing Dec-POMDPs. For instance, reported results for policy
compression [5] solve the Dec-Tiger and BroadcastChannel
problems only up to horizon 4 (in 534s resp. 4.59s).

6.2 General clustering performance
The reduction in BG-size in GMAA∗-Cluster leads to sig-

nificant gains in efficiency, showing that heuristically high-
ranked partial policies allow for much clustering. We also in-
vestigated the general applicability of our clustering method
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Figure 1: Empirical clustering performance given
random joint policies, for several problems, based
on 1,000 independent samples. Plots (a)–(f) show
the median size of the Bayesian games at each stage
after clustering |cBGt|, and the errorbars show the
0.25 and 0.75-quantile. Table (g) shows their median

clustering ratio |BGt|
|cBGt|

for the last time step tested.

by testing how much clustering can be done in BGs con-
structed for random past policies. If substantial cluster-
ing is possible on random policies, not just those considered
by GMAA∗-Cluster, then our approach may be useful for a
much broader set of methods. The results are shown in Fig-
ure 1, which for different stages shows the median number
of joint types |cBGt| in the Bayesian games (constructed for
1,000 random past policies) after clustering.

The FireFighting problem, which could not be clustered
when searching for an optimal policy, does allow for some
clustering given randomly selected policies (Figure 1(g)).
In both the Recycling Robots and the Hotel 1 problem the
growth in BG size appears to stabilize, while in Dec-Tiger,
GridSmall, and Cooperative Box Pushing |cBGt| keeps grow-
ing in the planning horizon. Even so, |BGt| grows faster,
resulting in high clustering ratios for these problems also.

These experiments imply that our clustering technique
can provide significantly smaller policy representations with-
out loss of value at a relatively low computational cost, for
the benefit of optimal and approximate algorithms alike.
Also this technique gives insight into how many future poli-
cies an agent should consider: if at some stage and given
a past policy an agent has only k types, this means that
it maximally needs to consider k future policies from that
situation. Some state-of-the-art approximate Dec-POMDP
solvers (e.g. IMBDP [15, 6]) have a parameter controlling
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the number of future policies considered, but until now there
has been no principled way of estimating good values for this
parameter. As such, we expect that this clustering technique
can have a substantial impact on new and existing, exact and
approximate algorithms.

6.3 Discussion
Our empirical results show that lossless clustering offers

dramatic performance gains on a diverse set of problems.
However, since some domains cannot be clustered in this
way, it remains unclear in exactly what types of problems
lossless clustering is effective. This is a hard question, as
it requires an analysis of the subclasses of Dec-POMDPs, a
matter about which relatively few results are known. Most
research has focused on analysis of methods, rather than
of properties of Dec-POMDP problems, notable exceptions
being [14, 9]. Although a detailed analysis is beyond the
scope of this paper, we offer some observations based on our
empirical results.

As noted before, the BroadcastChannel problem exhibits
full clustering, which we can explain as follows. When con-
structing a BG for t = 1, there is only one joint type for
the previous BG, so we know what the joint action was.
The crucial property of BroadcastChannel is that the (joint)
observation tells us nothing about the new state, but only
about what joint action was taken (e.g., ‘collision’ if both
agents chose to ‘send’). As a result, the observation does
not convey any information and the different individual his-
tories can be clustered. In a BG constructed for stage t = 2,
there will again be only one joint type in the previous game.
Therefore, given the past policy, the actions of the other
agents can be perfectly predicted. Again the observation
will convey no information so this process repeats. Conse-
quently, the problem can be considered a special form of a
non-observable Dec-POMDP; lossless clustering automati-
cally exploits this property.

In the FireFighting and GridSmall little or no clustering
was possible. Analysis revealed that given most (and espe-
cially given sensible) joint policies, each observation history
implicated a different belief over states violating (5). For
longer horizons it is less likely that every history induces
such a different belief and we expect more clustering, which
is confirmed by Figure 1(g).

The other problems are harder to analyze. In Dec-Tiger
a key property is that opening the door resets the prob-
lem. Such resets invalidate the history, allowing for cluster-
ing. Another factor is that the observations are condition-
ally independent given only the new state. I.e., P (o|a,s′) =
P (o1|s

′)P (o2|s
′), which means that all information regard-

ing the history of the other agent is obtained through esti-
mation of the state.

Of course, the criterion for clustering is quite strict and
there will also be many problems in which little or no loss-
less clustering is possible. In the future, we plan to con-
sider approximations for such cases. In particular, one idea
is to cluster approximately PE histories, e.g., if Kullback-
Leibler divergence is below some threshold. Another idea
is to cluster histories that induce the same individual belief
over states:

P (s|�θi) =
X
�θ �=i

P (s,�θ�=i|�θi). (13)

Such individual beliefs literally summarize the criterion and

may therefore perform quite well in practice. Further inves-
tigation is needed to determine for which classes of problems
such approximations might work.

7. CONCLUSIONS
This paper introduced a method for lossless clustering

of action-observation histories in Dec-POMDPs, which can
be applied in GMAA∗ policy search for Dec-POMDPs via
Bayesian games. Rather than applying an ad-hoc cluster-
ing of these BGs, we identified a probabilistic equivalence
criterion that guarantees that, given a particular past joint

policy ϕt, two action-observation histories �θ t
i of agent i at

stage t have the same optimal Q-values and therefore can be
clustered without loss in solution quality. Empirical eval-
uation of GMAA∗ demonstrated that for several domains
speedups of multiple orders of magnitude are achieved by
clustering. We also investigated the amount of clustering
possible for random past policies ϕt, the result of which
suggests that our clustering methods may also be exploited
in other algorithms, such as IMBDP [15]. As such, we ex-
pect that the proposed clustering method may have a sig-
nificant impact on both exact and approximate solutions of
Dec-POMDPs.

APPENDIX
Here we provide (sketches of) the proofs.

Proof of Lemma 1. Assume an arbitrary at
i,o

t+1
i , βt

�=i,s
t+1

and �θt+1
�=i = (�θt

�=i,a
t
�=i,o

t+1
�=i )). We have that

P (st+1
,�θ

t+1
�=i ,o

t+1
i |�θ t

i,a,a
t
i,β

t
�=i) =

X
st

P (ot+1
i ,o

t+1
�=i |at

i,a
t
�=i,s

t+1)

P (st+1|st
,a

t
i,a

t
�=i)P (at

�=i|�θ
t
�=i,β

t
�=i)P (st

,�θ
t
�=i|�θ

t
i,a)

= P (st+1
,�θ

t+1
�=i ,o

t+1
i |�θ t

i,b,a
t
i,β

t
�=i)

Because we assumed an arbitrary st+1,�θt+1
�=i ,ot+1

i it holds for
all, which means we can conclude

P (st+1
,�θ

t+1
�=i |�θ t

i,a,a
t
i,o

t+1
i ,β

t
�=i) = P (st+1

,�θ
t+1
�=i |�θ t

i,b,a
t
i,o

t+1
i ,β

t
�=i)

Finally, because at
i,o

t+1
i ,βt

�=i,s
t+1,�θt+1

�=i were all arbitrarily
chosen we can conclude (6).

Proof of Theorem 2. We show that the expected value
of any joint policy (βi,β �=i) that satisfies condition (7) is the
same in both B and B′.

V (βi,β �=i) =
X

θ

P (θ)u(θ,β(θ)),

=
X
θ �=i

X
θi

P (θi,θ �=i)u(〈θi,θ �=i〉 ,〈βi(θi),β �=i(θ�=i)〉),

using short-hand a = 〈βi(θi),β �=i(θ�=i)〉, V B(βi,β �=i)

=
X
θ �=i

" (P (θa
i ,θ�=i)+P (θb

i ,θ�=i))u(θc
i ,θ�=i,a)z }| {

P (θa
i ,θ �=i)u(θa

i ,θ �=i,a) + P (θb
i ,θ �=i)u(θb

i ,θ �=i,a)

+
X

θi∈Θi\{θa
i

,θb
i
}

P (θi,θ �=i)u(θi,θ �=i,a)

#

=
X
θ �=i

"
P (θc

i ,θ �=i)u(〈θc
i ,θ �=i〉 ,a) + . . .

#
= V

B′

(βi,β �=i)

which is the expected value of (βi,β �=i) as computed in the
reduced BG.
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Proof of Lemma 4. The proof is by induction. The
base case is given by the last stage t = h − 1 of the Dec-
POMDP. In this case we have that

∀a∀�θt
�=i

Q
∗(�θi,a,�θ�=i,a) =

X
s∈S

R(s,a)P (s|�θ�=i,�θi,a) =

X
s∈S

R(s,a)P (s|�θ�=i,�θi,b) = Q
∗(�θ�=i,�θi,b,a)

because of (5) in 1. For stages 0 ≤ t < h − 1 the optimal
Q-value function is given by

Q
∗(�θt

,a) = R(�θt
,a) +

X
ot+1∈O

P (ot+1|�θt
,a)Q∗(�θt+1

,π
∗(�θt+1)).

The induction hypothesis is as follows: If at t+1 the criteria

hold for any two �θ t+1
i,a ,�θ t+1

i,b , then they have equal Q-values:

∀�θ
t+1
�=i

∀at+1 Q
∗(�θ t+1

i,a ,�θ
t+1
�=i ,a

t+1) = Q
∗(�θ t+1

i,b ,�θ
t+1
�=i ,a

t+1).

(14)
Assume some stage 0 ≤ t < h − 1. Assume that the

criteria hold for �θ t
i,a,�θ t

i,b. Assume an arbitrary a = 〈ai,a �=i〉

and �θt
�=i. Now we need to show that

R(�θ t
i,a,�θ

t
�=i,a)+

X
ot+1∈O

P (ot+1|�θ t
i,a,�θ

t
�=i,a)Q∗(�θt+1

a ,π
∗(�θt+1

a )) =

R(�θ t
i,b,�θ

t
�=i,a)+

X
ot+1∈O

P (ot+1|�θ t
i,b,�θ

t
�=i,a)Q∗(�θt+1

b ,π
∗(�θt+1

b ))

(15)

To prove the equality of (15), we have to show that: 1)
The immediate rewards are equal. This clearly is the case
(similar to the proof of the last stage). 2) Equal observation
probabilities. This is also evident given that the criterion
holds. (if the underlying state distribution is the same the
next joint observation probabilities are also identical.) 3)
The relevant next-stage Q-values are identical. I.e.:

∀ot+1∀at+1 Q
∗(�θt+1

a ,a
t+1) = Q

∗(�θt+1
b ,a

t+1). (16)

To prove this, we show that the identically extended histories
are PE, and that therefore the induction hypothesis applies:
We can rewrite the demonstrandum (16) to

∀
o

t+1
i

∀
o

t+1
�=i

∀at+1 Q
∗(�θ t+1

i,a = (�θ t
i,a,ai,o

t+1
i ),�θt+1

�=i ,a
t+1) =

Q
∗(�θ t+1

i,b = (�θ t
i,b,ai,o

t+1
i ),�θt+1

�=i ,a
t+1).

This is proven (by application of the induction hypothesis)

if we can show that the criterion holds for �θ t+1
i,a ,�θ t+1

i,b . Since
�θ t+1

i,a ,�θ t+1
i,b are identical extensions of PE histories �θ t

i,a,�θ t
i,b,

they themselves are PE by application of Lemma 1.
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